Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(4): 1785-1798, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38384144

RESUMO

Real-time sensing of dopamine is essential for understanding its physiological function and clarifying the pathophysiological mechanism of diseases caused by impaired dopamine systems. However, severe fouling from nonspecific protein adsorption, for a long time, limited conventional neural recording electrodes concerning recording stability. This study reported a high-antifouling nanocrystalline boron-doped diamond microsensor grown on a carbon fiber substrate. The antifouling properties of this diamond sensor were strongly related to the grain size (i.e., nanocrystalline and microcrystalline) and surface terminations (i.e., oxygen and hydrogen terminals). Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond microsensor exhibited enhanced antifouling characteristics against protein adsorption, which was attributed to the formation of a strong hydration layer as a physical and energetic barrier that prevents protein adsorption on the surface. This finally allowed for in vivo monitoring of dopamine in rat brains upon potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors. Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond (O-NCBDD) microsensor exhibited ultrahydrophilic properties with a contact angle of 4.9°, which was prone to forming a strong hydration layer as a physical and energetic barrier to withstand the adsorption of proteins. The proposed O-NCBDD microsensor exhibited a high detection sensitivity of 5.14 µA µM-1 cm-2 and a low detection limit of 25.7 nM. This finally allowed for in vivo monitoring of dopamine with an average concentration of 1.3 µM in rat brains upon 2 µL of potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors.


Assuntos
Diamante , Dopamina , Dopamina/análise , Dopamina/química , Animais , Diamante/química , Interações Hidrofóbicas e Hidrofílicas , Ratos , Incrustação Biológica/prevenção & controle , Boro/química , Neurotransmissores/análise , Técnicas Biossensoriais/métodos , Adsorção , Simulação de Dinâmica Molecular , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Masculino , Nanopartículas/química
2.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138367

RESUMO

The increasing demand for accurate imaging spectral information in remote sensing detection has driven the development of hyperspectral remote sensing instruments towards a larger view field and higher resolution. As the core component of the spectrometer slit, the designed length reaches tens of millimeters while the precision maintained within the µm level. Such precision requirements pose challenges to traditional machining and laser processing. In this paper, a high-precision air slit was created with a large aspect ratio through MEMS technology on SOI silicon wafers. In particular, a MEMS slit was prepared with a width of 15 µm and an aspect ratio exceeding 4000:1, and a spectral spectroscopy system was created and tested with a Hg-Cd light source. As a result, the spectral spectrum was linear within the visible range, and a spectral resolution of less than 1 nm was obtained. The standard deviation of resolution is only one-fourth of that is seen in machined slits across various view fields. This research provided a reliable and novel manufacturing technique for high-precision air slits, offering technical assistance in developing high-resolution wide-coverage imaging spectrometers.

3.
Water Res ; 243: 120312, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453402

RESUMO

Advanced oxidation processes are commonly considered one of the most effective techniques to degrade refractory organic pollutants, but the limitation of a single process usually makes it insufficient to achieve the desired treatment. This work introduces, for the first time, a highly-efficient coupled advanced oxidation process, namely Electro-Oxidation-Persulfate-Electro-Fenton (EO-PS-EF). Leveraging the EO-PS-EF tri-coupling system, diverse contaminants can be highly efficiently removed with the help of reactive hydroxyl and sulfate radicals generated via homogeneous and heterogeneous bi-catalysis, as certified by radical quenching and electron spin resonance. Concerning degradation of tetracycline (TC), the EO-PS-EF system witnessed a fast pseudo-first-order reaction kinetic constant of 2.54 × 10-3 s-1, ten times that of a single EO system and three-to-four times that of a binary system (EO-PS or EO-EF). In addition, critical parameters (e.g., electrolyte, pH and temperature) are systematically investigated. Surprisingly, after 100 repetitive trials TC removal can still reach 100% within 30 min and no apparent morphological changes to electrode materials were observed, demonstrating its long-term stability. Finally, its universality was demonstrated with effective degradation of diverse refractory contaminants (i.e., antibiotics, dyes and pesticides).


Assuntos
Antibacterianos , Poluentes Químicos da Água , Radical Hidroxila , Tetraciclina , Sulfatos , Catálise , Poluentes Químicos da Água/análise , Oxirredução , Peróxido de Hidrogênio
4.
Chem Sci ; 12(37): 12494-12500, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34603681

RESUMO

Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of µm s-1 down to few µm s-1 within the last µm above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.

5.
ACS Appl Mater Interfaces ; 13(24): 28129-28139, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110142

RESUMO

Aqueous zinc-ion batteries (ZIBs) have attracted considerable attention because of their low cost, high intrinsic safety, and high volumetric capacity. However, unexpected dendrite growth and side reactions that arise at the Zn anode can severely hinder the mass adoption of ZIBs in practical applications. Herein, we report a dendrite-free ZIB anode via the hybridization of a eutectic ZnAl alloy with a copper mesh (denoted as ZnAl@Cu-mesh). The eutectic structure of the ZnAl alloy is composed of alternating Zn blocks and Al nanoflakes. The Al nanoflakes sacrificially consume the oxygen in the electrolyte to form an Al2O3/Al shell-core structure, which in turn guides the Zn deposition process by restraining the lateral diffusion of zinc ions and hence reducing the extent of dendrite formation. This process can synergistically reduce the likelihood of Zn passivation, which allows the Zn region to remain electrochemically active for the Zn stripping/plating process. Meanwhile, a copper mesh is used as a scaffold to provide uniform electric field distribution. As a result, the symmetric ZnAl@Cu-mesh//ZnAl@Cu-mesh cell presents appreciably low polarization (30 mV at 0.5 mA cm-2) and excellent cycling stability (240 h at 0.5 mA cm-2), as compared to Zn//Zn. Based on the postmortem investigation, ZnAl@Cu-mesh is able to retain a dendrite-free morphology after cycling at 1 mA cm-2, while significant dendrite formation can be observed for Zn. More impressively, the ZnAl@Cu-mesh//V2O5 full cell is able to achieve a 95% capacity retention after 2000 cycles at 2 A g-1, whereas its counterpart assembled with Zn fails after only 750 cycles because of short-circuit. Thus, the composite alloying strategy proposed in this work may provide an appealing direction toward the future development of dendrite-free anodes for rechargeable secondary batteries.

6.
ACS Nano ; 15(1): 1250-1258, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33325229

RESUMO

Nanoparticles interact with a variety of interfaces, from cell walls for medicinal applications to conductive interfaces for energy storage and conversion applications. Unfortunately, quantifying dynamic changes of nanoparticles near interfaces is difficult. While optical techniques exist to study nanoparticle dynamics, motions smaller than the diffraction limit are difficult to quantify. Single-entity electrochemistry has high sensitivity, but the technique suffers from ambiguity in the entity's size, morphology, and collision location. Here, we combine optical microscopy, single-entity electrochemistry, and numerical simulations to elucidate the dynamic motion of graphene nanoplatelets at a gold ultramicroelectrode (radius ∼5 µm). The approach of conductive graphene nanoplatelets, suspended in 10 µM NaOH, to an ultramicroelectrode surface was tracked optically during the continuous oxidation of ferrocenemethanol. Optical microscopy confirmed the nanoplatelet size, morphology, and collision location on the ultramicroelectrode. Nanoplatelets collided on the ultramicroelectrode at an angle, θ, enhancing the electroactive area, resulting in a sharp increase in current. After the collision, the nanoplatelets reoriented to lay flat on the electrode surface, which manifested as a return to the baseline current in the amperometric current-time response. Through correlated finite element simulations, we extracted single nanoplatelet angular velocities on the order of 0.5-2°/ms. These results are a necessary step forward in understanding nanoparticle dynamics at the nanoscale.

7.
Anal Chem ; 90(21): 12923-12929, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30284818

RESUMO

One of the greatest limitations in electrochemical collision/nanoimpact methods is the inability to quantify the size of colliding species due to the uneven current distribution on a disk ultramicroelectrode UME (so-called edge effect). This phenomenon arises since radial diffusion is greater at the edge than the center of the active electrode surface. One method of solving this problem is fabrication of a hemispherical UME. We describe the fabrication of a hemispherical Hg UME on a disk UME by a solution-based electrochemical method, chronocoulometry. The use of hemispherical Hg UME to detect collisions of individual amine-functionalized polystyrene beads removes the "edge effect" and enables simultaneous measurements of the concentration and the size distribution of colloids in suspension. Using finite element simulations, we deduce a quantitative relation between the distribution of current step size and the size distribution of the bead. The frequency of collision measured for a given size of bead is then converted into a concentration (in mol/L) by a quantification of the relative contributions of migration and diffusion for each size of bead. Under our experimental conditions (low concentration of supporting electrolyte), migration dominates the flux of bead. The average size of polystyrene beads of 0.5 and 1 µm radius obtained by electrochemistry and scanning electron microscopy (SEM) differs by only -8% and -9%, respectively. The total concentration of polystyrene beads of 0.5 and 1 µm radius obtained by electrochemistry is found in close agreement (<10% of error) with their nominal concentrations (25 and 100 fM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...